To: Project Engineers, Project Managers

From: Marty Walther, Dam Safety Engineer

Subject: Dam Safety Engineering Reports

The following information may be helpful to you in compiling the engineering documents for your new dam or dam modification project. Guidance for dam engineering design reports is provided in Dam Safety Guidelines, Part II, Project Planning and Approval, in Section 3.3. A copy of this section from Guidelines Part II is attached.

If you have limited experience submitting engineering reports to the Dam Safety Office, we have attached a suggested table of contents that provides a framework for compiling the information requested in Guidelines Part II, Section 3.3. A condensed table of contents is shown on the following page, with an annotated version on subsequent pages to provide more details about each section of the report.

This suggested table of contents adds to the guidance in our Dam Safety Guidelines on the content and level of detail needed to convey the professional judgment behind the engineering designs for dams and spillways. Although we have provided this guidance, you are free to use another format that you or your firm prefers for these types of engineering reports.

Some items or topics listed here will not apply to your particular project. You may revise both the content and the format of the engineering reports as appropriate for your specific projects. Also, note that the details under each heading will vary based on the size and complexity of the project. For small, low hazard dams, brief descriptions might be warranted, whereas for larger, more complex structures, more detailed descriptions may be needed.

Early and open communication helps all of us. If you have any questions, please do not hesitate to call or e-mail.

Marty Walther
360-407-6420
martin.walther@ecy.wa.gov
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Information</td>
<td>x</td>
</tr>
<tr>
<td>Dam Failure Analysis</td>
<td>x</td>
</tr>
<tr>
<td>Dam breach hydrographs</td>
<td>x</td>
</tr>
<tr>
<td>Flood routing and inundation area</td>
<td>x</td>
</tr>
<tr>
<td>Downstream hazard classification</td>
<td>x</td>
</tr>
<tr>
<td>Design step for hydrologic analysis</td>
<td>x</td>
</tr>
<tr>
<td>Hydrologic Analysis</td>
<td>x</td>
</tr>
<tr>
<td>Dam safety design storms</td>
<td>x</td>
</tr>
<tr>
<td>Watershed description and parameters</td>
<td>x</td>
</tr>
<tr>
<td>Inflows and outflows for off-stream reservoir or lagoon</td>
<td>x</td>
</tr>
<tr>
<td>Reservoir and spillway parameters</td>
<td>x</td>
</tr>
<tr>
<td>Inflow design flood</td>
<td>x</td>
</tr>
<tr>
<td>Spillway performance and reservoir freeboard</td>
<td>x</td>
</tr>
<tr>
<td>Spillway and Outlet Design</td>
<td>x</td>
</tr>
<tr>
<td>Principal (Flow Control) Spillway</td>
<td>x</td>
</tr>
<tr>
<td>Secondary Spillway</td>
<td>x</td>
</tr>
<tr>
<td>Emergency Spillway</td>
<td>x</td>
</tr>
<tr>
<td>Outlet Works</td>
<td>x</td>
</tr>
<tr>
<td>Geotechnical Analysis and Design</td>
<td>x</td>
</tr>
<tr>
<td>Usually a separate geologic/geotechnical report by a geotechnical sub-consultant. See Dam Safety Guidelines for further guidance.</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>x</td>
</tr>
<tr>
<td>Project Data Sheet</td>
<td>x</td>
</tr>
<tr>
<td>Appendices</td>
<td>xx</td>
</tr>
<tr>
<td>Dam and reservoir</td>
<td>xx</td>
</tr>
<tr>
<td>Dam failure analysis</td>
<td>xx</td>
</tr>
<tr>
<td>Hydrologic analysis</td>
<td>xx</td>
</tr>
<tr>
<td>Spillway and outlet design</td>
<td>xx</td>
</tr>
</tbody>
</table>
Dam / Stormwater Pond

Dam Safety Engineering Report

Table of Contents (Annotated)

General Information
Location and purpose of project. Embankment dimensions, geometry, key elevations. Stage-surface area-storage volume table for pond or reservoir at key elevations.

Dam Failure Analysis
Dam breach hydrographs
Methodology to estimate dam breach dimensions and hydrographs; summary statistics.
Flood routing and inundation area
Describe downstream flood path; methodology for flood routing; flood wave travel time and peak attenuation; inundation map; flood depths or elevations at selected locations.
Downstream hazard classification
Population and resources at risk; hazard class.
Design step for hydrologic analysis
Results from design step worksheet or from incremental damage analysis.

Hydrologic Analysis
Dam safety design storms
Climatic region; index period and total storm rainfall depths for dam safety storms.
Watershed description and parameters
Drainage area; sub-basins; land uses, percent impervious; soil types, soil groups (A,B,C, D), SCS curve numbers (CN); surficial and deep infiltration rates, storage capacity of surface layer; time of concentration, unit hydrograph lag time; detention features (lakes, wetlands); channel routing.
Inflows and outflows for off-stream reservoir or lagoon
Inflow sources (rain on reservoir surface; diversions or pumpage of surface water, groundwater, stormwater, wastewater); summary descriptions for inflow and outflow conveyance facilities (types, key dimensions, flow capacities, pump parameters); for wastewater inflows, describe water quality issues and parameters.
Reservoir and spillway parameters
Stage-surface area-storage volume for key elevations; required freeboard; summary descriptions for spillways (types, key dimensions, flow capacities).
Inflow design flood
Identify hydrology computer model (HEC-HMS, HSPF, other); storm or inflow scenario for IDF; peak inflow (cfs) to pond or reservoir; runoff volume (acre-feet) from watershed into pond; runoff volume as percentage of storm precipitation volume.
Spillway performance and reservoir freeboard
Peak stage in pond or reservoir; peak outflow (cfs) over the spillway(s); compare actual to required freeboard.

Spillway and Outlet Design
(Examples only, omit items or rearrange as applicable to your project.)
Principal (Flow Control) Spillway
Dimensions, materials, key elevations for flow control structure and outlet pipe; stage-discharge table/curve; reservoir drawdown table/curve.
Spillway and Outlet Design (continued)

Secondary Spillway
Dimensions, materials, key elevations for drop inlet spillways; stage-discharge table/curve; flow surges and air venting; spillway outfall.

Emergency Spillway
Dimensions, lining materials, key elevations for open channels; stage-discharge table/curve; flow velocities and erosion resistance; spillway outfall.

Outlet Works
Dimensions, materials, key elevations for low outlet pipes; control valves; stage-discharge table/curve; reservoir drawdown table/curve.

Geotechnical Analysis and Design
Usually a separate geologic/geotechnical report by a geotechnical sub-consultant.
See Dam Safety Guidelines for further guidance.

References

Project Data Sheet (see below)

Appendices

Dam and reservoir

Maps, drawings, tables
• Map(s) showing project location and pond/reservoir area.
• Plan, section and profile views of the embankment.
• Stage-surface area-storage volume table for pond or reservoir, 1 foot intervals or smaller, plus key elevations for water levels (WQ pool, 100-year storm), spillways (overflow elevations), dam crest.

Dam failure analysis

Maps
• Map(s) showing inundation area and/or downstream hazard locations. Include flood wave travel times and flood depths or elevations at key locations.

Dam breach hydrographs

Piping failure
• Calculations of dam breach dimensions, timing and discharge.
• Summary statistics from dam breach hydrograph (see below).
• Graph of dam breach hydrograph.

Overtopping failure
• Calculations of dam breach dimensions, timing and discharge.
• Summary statistics from dam breach hydrograph (see below).
• Graph of dam breach hydrograph.
Dam failure analysis (continued)

Flood path
- Hydraulic profile of downstream channel.
- Channel cross-sections at selected locations.
- Network for computer model.

Flood routing
Piping failure
- Hydrographs for selected locations.
- Flood wave travel times and peak discharges at selected locations.
- Comparisons to 100-year natural flood discharges at selected locations.

Overtopping failure
- Hydrographs for selected locations.
- Flood wave travel times and peak discharges at selected locations.
- Comparisons to 100-year natural flood discharges at selected locations.

Water surface elevations
Piping failure
- Inundation depths, elevations and top widths for selected locations.
- HEC-RAS standard output table.

Overtopping failure
- Inundation depths, elevations and top widths for selected locations.
- HEC-RAS standard output table.

Design step for hydrologic analysis
- Design step worksheet, either photocopied or spreadsheet version.
- Incremental damage analysis; flood hydrographs and flood elevations with and without dam failure; selected design step.

Hydrologic analysis
Maps and drawings
- Map(s) showing topography, drainage areas, hydraulic features.
- Map(s) showing watershed soils, land uses.
- Map and line diagram of inflows and outflows for off-stream reservoir or lagoon.

Watershed hydrology
- Network for hydrologic model.
- Time and rainfall parameters.
- Runoff parameters.
- Time of concentration.
- Infiltration and CN computations.
- Design storm precipitation.
- Storm, interflow and loss hyetographs.
Hydrologic analysis (continued)

Inflows and outflows for off-stream reservoir or lagoon
- Parameters for inflow conveyance facilities – pipeline or channel location, length, bed slope, key dimensions and elevations, cross-section geometry, flow capacity.
- Parameters for outflow conveyance facilities – pipeline or channel location, length, bed slope, key dimensions and elevations, cross-section geometry, flow capacity.
- Parameters for inflow or outflow pumping facilities – pump station location and pump configurations, pump parameters (Hp, GPM, TDH; copy of pump curve).
- For wastewater inflows, summary of key water quality parameters; list NPDES or State Discharge Permit number.

Spillway and reservoir parameters
- Stage-discharge table and curve for combined spillways.
- Required reservoir freeboard.
- Stage-surface area-storage volume table for reservoir, at same intervals as stage-discharge curve.

Results from computerized analysis
- Network and summary input data for hydrologic model.
- Summary results.
- Reservoir freeboard during IDF.
- Reservoir inflow and outflow hydrographs.
- Runoff hydrographs for representative sub-basins.

Spillway and outlet design

Principal (Flow Control) Spillway
- Plan, section and profile views of the spillway and outfall.
- Stage-discharge calculations, table and curve.
- Reservoir drawdown calculations, table and curve.

Secondary Spillway (items for drop inlet spillway)
- Plan, section and profile views of the spillway and outfall.
- Stage-discharge calculations, table and curve.
- Flow surge and air vent calculations.

Emergency Spillway (items for open channel spillway)
- Plan, section and profile views of the spillway and outfall.
- Stage-discharge calculations, table and curve.
- Calculations of flow velocities and adequacy of erosion resistance.

Outlet Works
- Plan, section and profile views of the outlet pipe and outfall.
- Stage-discharge calculations, table and curve.
- Pump parameters – Hp, GPM, TDH; copy of pump curve.
- Reservoir drawdown calculations, table and curve.
Summary statistics from dam breach hydrographs:

Piping failure: Peak discharge \(= \) _____ cfs
(negligible inflow during failure)
Time to peak discharge \(= \) _____ hours
Time for breach development \(= \) _____ hours
Time to drain the reservoir \(= \) _____ hours
Reservoir volume \(= \) _____ acre-feet

Overtopping failure: Peak discharge \(= \) _____ cfs
includes inflow \(= \) _____ cfs
Time to peak discharge \(= \) _____ hours
Time for breach development \(= \) _____ hours
Time to drain the reservoir \(= \) _____ hours
Reservoir volume \(= \) _____ acre-feet
Flood hydrograph volume \(= \) _____ acre-feet

Project Data Sheet

Template formats for project data sheets are shown on the following pages. Each project data sheet is two to three pages long. Two formats are presented for you to select from. The first format was developed with many of our existing dams in mind, typically used for purposes such as irrigation water supply, flood control, recreation, or wastewater treatment. The second format was developed with new storm ponds in mind, typically used for stormwater management, or in some cases specifically for flood control.

You should format and edit the project data sheet to best describe your specific project. In particular, the slashes “/” indicate where you must choose between two or more possible choices. (The exception here is for spillway profile slopes given in units of ft/ft.) If the abbreviations are too confusing, please feel free to call or email for clarification. The blanks generally need some numerical information (except for creek or river names in the downstream flood path, or the watershed or stream name for off-stream reservoirs or storm ponds).

Feel free to delete items that do not apply to your dam and to rearrange items as appropriate. For example, if your principal spillway is an open channel rather than a drop inlet structure, simply use the text for the open channel within the Principal Spillway section. If your dam has just one overflow spillway, simply use whichever text applies in a section titled Overflow Spillway and delete the unneeded text. If your dam has a separate low outlet pipeline in addition to principal, secondary and emergency spillways, simply add an Outlet Works section to the second format data sheet on a third page.

Some additional comments follow after the Project Data Sheet templates.
Dam

Project Data Sheet
(1st format)

General
State I.D. No. [Dam Safety file no.]
Owner and Operator [company name]
Location T ___ N, R ___ E/W, Section ___ ___ miles N/S/E/W of (major city/town)
Construction Completed 19___ / 20___
Purpose Irrig water supply / Flood control / Rec.
Public Water System WFI No. [delete if not applicable]
NPDES / State Discharge Permit No. [delete if not applicable]
Downstream Hazard Potential High/Significant/Low, Hazard Class ___
Downstream Flood Path __________ Creek to __________ River
to _____________ Lake/River/Floodplain

Reservoir
Watershed [stream name]
Drainage Area ___ acres / square miles
Normal / WQ Pool Operating Elevation ______ feet
Surface Area at Normal / WQ Pool ___ acres
Active Storage at Normal / WQ Pool ___ acre-feet
Spillway Overflow Elevation ______ feet
Surface Area at Spillway Overflow ___ acres
Active Storage at Spillway Overflow ___ acre-feet
Dam Crest Elevation ______ feet
Surface Area at Dam Crest ___ acres
Active Storage at Dam Crest ___ acre-feet

Dam Embankment
Type [type and internal seepage/drainage controls]
Structural Height _____ feet
Hydraulic Height _____ feet
Crest Elevation _____ feet
Elevation Datum Spillway / MH lid / [other] = _____ feet

Crest Length _____ feet
Crest Width _____ feet
Upstream Slope _____ H:1V
Downstream Slope _____ H:1V
Principal Spillway

- **Type**: [Concrete/material] drop inlet
- **Location**: Center of dam / right/left abut / natural grnd
- **Discharge Capacity**: ___ cfs at water level ____ feet
 ___ cfs at water level ____ feet
- **Overflow Elevation**: ___ feet
- **Riser Diameter / Dimensions**: ___ feet x ____ feet
- **Overflow Weir Length**: ___ feet
- **Discharge Conduit – section**: ___ inch diameter [material] pipe
- **Discharge Conduit – profile**: ___ feet long: _____ ft at slope ______ ft/ft,
 then _____ feet at slope _____ ft/ft (___ H:1V)

Emergency Spillway

- **Type**: [material]-lined open channel
- **Location**: Center of dam / right/left abut / natural grnd
- **Discharge Capacity**: ___ cfs at water level ____ feet
 ___ cfs at water level ____ feet
- **Overflow Elevation**: ___ feet
- **Overflow Control Section**: Base width ___ feet, side slopes ___ H:1V
- **Discharge Channel – section**: Base width ___ feet, side slopes ___ H:1V
- **Discharge Channel – profile**: ___ feet long: _____ ft at slope ______ ft/ft,
 then _____ feet at slope _____ ft/ft (___ H:1V)

Inflow Design Flood – Storm

- **Step __, __% PMP; Shrt/Intm/Long, hi int/vol**
 2/6/24 hr = ___ inch, 6/18/72 hr = ___ inch
 (as calculated per Technical Note 3, 1993/2009)

Outlet Works

- **Type**: ___ inch diameter [material] pipe
- **Location**: Principal spillway / center of dam / R/L abut
- **Discharge Capacity**: ___ cfs at water level ____ feet
 ___ cfs at water level ____ feet
- **Flow Controls**: Upstream – [req’d: valve, gate, orifice, etc.]
 Downstream – [valve, gate, orifice, etc.]
- **Intake Elevation**: ___ feet (pipe invert / centroid)
- **Outlet Conduit – profile**: ___ feet long, slope ______ ft/ft
- **Drawdown Capacity**: ___ feet/day at water level ____ feet
 (max drawdown at minimal inflow)
General

State I.D. No. [Dam Safety file no.]

Owner and Operator [company name]

Location T __ N, R __ E/W, Section ___ ___ miles N/S/E/W of (major city/town) 20___

Construction Completed

Purpose Stormwater management / Flood control

NPDES / State Discharge Permit No. [delete if not applicable]

Downstream Hazard Potential High/Significant/Low, Hazard Class ___

Downstream Flood Path __________ Creek to __________ River to __________ Lake/River/Floodplain

Reservoir

Watershed [stream] / Offstream within _____ drainage

Drainage Area ___ acres / square miles

WQ Pool Operating Elevation _______ feet

Surface Area at WQ Pool ___ acres

Inactive Storage at WQ Pool ___ acre-feet

Spillway Overflow Elevation _______ feet

Surface Area at Spillway Overflow ___ acres

Combined Storage at Spillway Overflow ___ acre-feet

Dam Crest Elevation _______ feet

Surface Area at Dam Crest ___ acres

Combined Storage at Dam Crest ___ acre-feet

Dam Embankment

Type [type and internal seepage/drainage controls]

Structural Height ___ feet

Hydraulic Height ___ feet

Crest Elevation ___ feet

Elevation Datum Spillway / MH lid / [other] = _____ feet

Crest Length ___ feet

Crest Width ___ feet

Upstream Slope ___ H:1V

Downstream Slope ___ H:1V
Dam Project Data Sheet (2nd format)

Principal Spillway

<table>
<thead>
<tr>
<th>Type</th>
<th>[Concrete/material] flow control structure with interior baffle wall / [material] riser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Center of dam / right/left abutment</td>
</tr>
</tbody>
</table>
| Discharge Capacity | ____ cfs at water level ____ feet
 ____ cfs at water level ____ feet |
| Riser Diameter / Dimensions | ____ feet x ____ feet |
| Interior Riser Diameter | ____ feet |
| Low Outlet Overflow Elevation | ____ feet |
| Intake Conduit – section | ____ inch diameter [material] pipe |
| Discharge Conduit – section | ____ inch diameter [material] pipe |
| Discharge Conduit – profile | ____ feet long: ____ ft at slope _____ ft/ft,
 then ____ feet at slope _____ ft/ft (____ H:1V) |
| Drawdown Capacity | ____ feet/day at water level ____ feet
 (max drawdown at minimal inflow)
 ____ feet/day at water level ____ feet |

Secondary Spillway

<table>
<thead>
<tr>
<th>Type</th>
<th>[Concrete/material] drop inlet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Principal spillway / center of dam / R/L abut</td>
</tr>
</tbody>
</table>
| Discharge Capacity | ____ cfs at water level ____ feet
 ____ cfs at water level ____ feet |
| Overflow Elevation | ____ feet |
| Riser Diameter / Dimensions | ____ feet x ____ feet |
| Overflow Weir Length | ____ feet |
| Discharge Conduit – section | ____ inch diameter [material] pipe |
| Discharge Conduit – profile | ____ feet long: ____ ft at slope _____ ft/ft,
 then ____ feet at slope _____ ft/ft (____ H:1V) |

Emergency Spillway

<table>
<thead>
<tr>
<th>Type</th>
<th>[material]-lined open channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Center of dam / right/left abut / natural grnd</td>
</tr>
</tbody>
</table>
| Discharge Capacity | ____ cfs at water level ____ feet
 ____ cfs at water level ____ feet |
| Overflow Elevation | ____ feet |
| Overflow Control Section | Base width ____ feet, side slopes ____ H:1V |
| Discharge Channel – section | Base width ____ feet, side slopes ____ H:1V |
| Discharge Channel – profile | ____ feet long: ____ ft at slope _____ ft/ft,
 then ____ feet at slope _____ ft/ft (____ H:1V) |

Inflow Design Flood

<table>
<thead>
<tr>
<th>Storm</th>
<th>Step __, __% PMP; Shrt/Intm/Long, hi int/vol</th>
</tr>
</thead>
</table>
| Precipitation | 2/6/24 hr = ____ inch, 6/18/72 hr = ____ inch
 (as calculated per Technical Note 3, 1993/2009) |
Most new dams are homogeneous earthfill embankments, or homogeneous earthfill with toe drain. A new dam more than 15 feet high that requires internal drainage would be described as homogeneous earthfill with chimney [and/or other] drain. An earth dam with a low-permeability core section and higher-permeability outer shell sections would be described as zoned earthfill [with chimney and/or other drain, if applicable].

In most cases, the Inflow Design Flood storm will be one of the following: Short duration; Intermediate; Long high-intensity; Long high-volume; or Long duration. The 2009 update to Technical Note 3 replaced the Long high-intensity and Long high-volume storms with just one Long duration storm, and revised all of the time-distribution hyetographs. It will be helpful to identify which version of Technical Note 3 was used in the IDF calculations.

As stated previously, if the abbreviations or other items in the data sheet templates are too confusing, please feel free to call or e-mail for a clarification.

Acknowledgements
The overall format for this suggested table of contents is substantially influenced and patterned after several dam safety engineering reports compiled by the engineering firms of Goldsmith and Associates of Bellevue in collaboration with Northwest Hydraulic Consultants of Tukwila.

The content for the dam failure and hydrology sections is substantially influenced by the content and format developed by Mel Schaefer, Bruce Barker, and Doug Johnson for these sections in Dam Safety’s Periodic Inspection Reports. Mel and Bruce currently work for the engineering firm of MGS Engineering Consultants of Olympia.

Caveats
This suggested table of contents is intended only as a vehicle for communication between design engineers and Dam Safety, to supplement the guidance given in our Dam Safety Guidelines with regard to the content and level of detail needed in the dam safety engineering report to document the professional judgment behind the engineering designs for dams and spillways. Designers and project engineers will need to revise both the content and the format of their engineering reports as appropriate for their specific projects.

Any questions or comments may be directed to Marty Walther, H/H specialist, Dept of Ecology, Dam Safety Office, phone 360-407-6420, E-mail: martin.walther@ecy.wa.gov.
Dam Safety Guidelines

Part II:

Project Planning and Approval of Dam Construction or Modification

July 1992 (Revised February 2008)
Publication #92-55B

Original printed on recycled paper
3.3 ENGINEERING DESIGN REPORTS

Engineering design reports summarizing the various engineering investigations and pertinent project information are an important element of the project design documents. All pertinent design reports shall be submitted to the DSO to provide basic information about the project.

The content of design reports will normally include a general section describing the proposed project and sections relating to specific areas of engineering design. The general section should include:

- A description of the basic purposes of the project;
- A description of the normal operational requirement; and
- A discussion of any unique or important design considerations associated with the site and project configuration.

Those sections involving the various areas of engineering design should address the pertinent items listed below and be supported by appropriate engineering analyses.

3.3.1 Dam Size and Reservoir Operation Classification

The size classification and reservoir operation classification of the proposed project should be listed as defined by Tables 2 and 3. These classifications are used throughout Part IV of the Dam Safety Guidelines for determining the degree of conservatism of design, and the sophistication of the methodologies to be used in analyses.

<table>
<thead>
<tr>
<th>SIZE CLASSIFICATION</th>
<th>DAM HEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Dam</td>
<td>Less than 15 feet</td>
</tr>
<tr>
<td>Intermediate Dam</td>
<td>15 feet or greater but less than 50 feet</td>
</tr>
<tr>
<td>Large Dam</td>
<td>50 feet or greater</td>
</tr>
</tbody>
</table>
TABLE 3. RESERVOIR OPERATION CLASSIFICATION

<table>
<thead>
<tr>
<th>Reservoir Operation Classification</th>
<th>Determining Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent Pool or Seasonal Pool Operation</td>
<td>Steady state seepage or saturated flow conditions occur in impounding barrier and foundation at or near normal pool conditions.</td>
</tr>
<tr>
<td>Intermittent Operation</td>
<td>Duration of normal high pool condition is insufficient for steady state seepage or saturated flow conditions to develop in impounding barrier and foundation.</td>
</tr>
</tbody>
</table>

3.3.2 Geologic/Geotechnical Analyses and Reports

A Geologic/Geotechnical report should provide, as a minimum, the following basic information:

- A presentation of the findings from subsurface explorations based on test pits and/or boring logs, field tests, laboratory testing, and classification of samples.

- A characterization of the site geology and identification of potential problems posed by site conditions. Generalized subsurface formations or stratigraphy, profiles, and sections should be developed.

- An identification and characterization of the seismotectonic provinces that could generate earthquakes large enough to significantly affect the project site.

- A description of the local groundwater regime.

3.3.3 Hydrologic/Hydraulic Analyses and Reports

A hydrologic/hydraulic report should address the pertinent items listed below and provide the following information:

- A topographic map delineating the watershed boundary and stream network. For extensively urbanized watersheds, an outline of storm sewer networks and pertinent hydraulic features should be included. Where it is necessary to divide a watershed into subbasins for analysis, a map is needed delineating the subbasins, along with a schematic description of the stream network used in the analysis.
• A description and a map delineating the various land uses, soil types, ground covers, and associated runoff characteristics of the subbasins or watershed.

• A listing of all sources of inflow to the reservoir.

• A description of initial watershed conditions and associated assumptions prior to the occurrence of the Inflow Design Flood (IDF). Initial conditions of interest may include streamflow and/or other inflow to the reservoir, reservoir levels, gate settings or outlet works discharge, antecedent soil moisture and associated runoff characteristics, antecedent snowpack conditions, and climatic information such as temperature and wind speeds needed for snowmelt computations and any other pertinent information.

• The unit hydrograph(s) or other similar flood response parameters for the subbasins or watershed, together with calculations or data supporting the selection of the parameters.

• The magnitude and temporal distribution of the design storm selected for use in computing the IDF described in either graphical or tabular form. Specific guidelines for selecting the design storm are provided in Part IV and Technical Notes 2 and 3 of the Dam Safety Guidelines. (Ref: Guidelines Part IV, Section 2.4, Inflow Design Flood)

• A listing of input and output of any computer models used in the analysis.

3.3.4 Dam Failure Analysis

An assessment of the consequences of a dam failure on downstream areas is required and should include the following:

• An estimation of the magnitude of the dam break flood hydrographs resulting from a hypothetical dam failure occurring with the reservoir at normal storage elevation and maximum storage elevation.

• A general description of the areas downstream of the dam that could be affected by floodwater from a dam failure.

• If there is the potential for loss of life, an inundation map delineating the maximum areal extent of flooding that could be produced by a dam failure. Inundation mapping should extend to a point downstream where the dam break flood would no longer pose
a risk to life. This is often interpreted to be coincident with the point where inundation from the dam failure is within the 100 year floodplain for the affected watercourse.

- The downstream hazard classification as defined by Table 4, which reflects the above conditions and those conditions that might be reasonably anticipated from future downstream development. The most serious potential consequences of failure for those conditions listed in columns 4A, 4B, and 4C shall be used to establish the appropriate downstream hazard classification.

Specific guidelines for dam break analyses are found in the Dam Safety Guidelines - Technical Note 1, Dam Break Inundation Analysis and Downstream Hazard Classification.

TABLE 4. DOWNSTREAM HAZARD CLASSIFICATION

<table>
<thead>
<tr>
<th>Downstream Hazard Potential</th>
<th>Downstream Hazard Classification</th>
<th>Column 4A Population at Risk</th>
<th>Column 4B Economic Loss Generic Descriptions</th>
<th>Column 4C Environmental Damages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>3</td>
<td>0</td>
<td>Minimal. No inhabited structures. Limited agriculture development.</td>
<td>No deleterious materials in water</td>
</tr>
<tr>
<td>Significant</td>
<td>2</td>
<td>1 to 6</td>
<td>Appreciable. 1 or 2 inhabited structures. Notable agriculture or work sites. Secondary highway and/or rail lines.</td>
<td>Limited water quality degradation from reservoir contents and only short-term consequences.</td>
</tr>
<tr>
<td>High</td>
<td>1C</td>
<td>7 to 30</td>
<td>Major. 3 to 10 inhabited structures. Low density suburban area with some industry and work sites. Primary highways and rail lines.</td>
<td>Severe water quality degradation potential from reservoir contents and long-term effects on aquatic and human life.</td>
</tr>
<tr>
<td>High</td>
<td>1B</td>
<td>31-300</td>
<td>Extreme. 11 to 100 inhabited structures. Medium density suburban or urban area with associated industry, property and transportation features.</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>1A</td>
<td>More than 300</td>
<td>Extreme. More than 100 inhabited structures. Highly developed, densely populated suburban or urban area with associated industry, property, transportation and community life line features.</td>
<td></td>
</tr>
</tbody>
</table>
3.3.5 **Engineering Calculations**

Engineering calculations and data supporting the detailed design of project components should be included with the submittal of the design reports. The design, analyses, and construction details should satisfactorily address the conditions at the proposed site. The supporting information should generally include:

- The design step level(s) used in the design of the critical project elements based on guidance contained in *Part IV of the Dam Safety Guidelines* and information in *Technical Note 2*.

- Stability analyses corroborating the design of the proposed embankment/barrier section under static and seismic loadings and rapid drawdown conditions.

- An assessment of the impoundment permeability and any associated local groundwater problems which may develop from the impoundment of water.

- Calculations for the design of any hydraulic structures, particularly outlet works, which are subject to high lateral earth pressures, relatively large seismic loads or excessive uplift pressures.

- Computations for sizing the principal and emergency spillways, and routing computations defining the reservoir inflow and outflow design flood hydrographs. If a computer model of the watershed is developed, a listing of pertinent input and output data should be included.

- A graph or chart describing the relationship between reservoir pool elevation and reservoir surface area (in acres).

- A graph or chart describing the relationship between reservoir pool elevation and reservoir storage volume (in acre-feet).

It should be emphasized, particularly for small projects, that many of the foregoing items, and those items described in the geologic, hydrologic and dam failure analyses sections can be adequately addressed through a simple reconnaissance of the site and surrounding topography. In addition, much of the needed guidance and information is contained in standard engineering texts, references and publications, some of which is summarized in *Part IV of the Dam Safety Guidelines*.

More detailed information on items commonly covered in design reports is provided in the U.S. Bureau of Reclamation's publication *Design of Small Dams*.